
4.1 - A History of the Improvement of Internet Protocols Over Satellites Using ACTS

Mark Allman
NASA Glenn Research Center/BBN Technologies
21000 Brookpark Road MS54-2
Cleveland, OH 44135
Phone: 216-433-6586; Fax: 216-433-8705
E-mail: mallman@grc.nasa.gov

HansKruse
McClureSchool of CommunicationsSystemsManagement
Ohio University
9 South CollegeStreet
Athens, OH 45701
Phone: 740-593-4891
E-Mail: hkruse1@ohiou.edu

Shawn Ostermann
School of Electrical Engineering and Computer Science
Ohio University
322 Stocker Center
Athens, OH 45701
Phone: 740-593-1234
E-Mail: ostermann@cs.ohiou.edu

Abstract

This paper outlines the main results of a number of ACTS experiments on the efficacy of using standard
Internet protocols over long-delay satellite channels. These experiments havebeen jointly conducted by NASA’s
Glenn Research Center and Ohio University over the last six years. The focus of our investigations has been the
impact of long-delay networks with non-zero bit-error rateson theperformance of thesuiteof Internet protocols.
In particular, we have focused on the most widely used transport protocol, the Transmission Control Protocol
(TCP), as well as several application layer protocols. This paper presents our main results, as well as references
to moreverbose discussions of our experiments.

1. Introduction

The work presented in this paper started in 1994 as a series of experiments to determine the impact of a geosyn-
chronoussatellite link in anetwork path on thestandard TCP/IP Internet suiteof protocols[Ste94]. Our investiga-
tionsareimportant for several reasons. First, commercial satellitecompanieswould liketo deliver Internet services
to consumersand institutionsin remoteareasof theworldnot coveredby goodterrestrial connectivity (e.g., Hughes
DirecPC). Our investigationshavehelped to defineand identify theextensionsto theInternet protocol suitethat are
beneficial to delivering Internet content over network paths containing long-delay satellite channels. In addition,
NASA is interested in possibly employing off-the-shelf Internet protocols to meet its near-Earth communication
needs. Therefore, our experiments focuson improving standard Internet protocols in ways that areboth safe in all
network environmentsand beneficial to long-delay networks.

We utilized NASA’s Advanced Communication Technology Satellite (ACTS) to conduct our experiments. We
used VSAT ground stations and data rates between roughly 0.75 Mbps and 1.5 Mbps (i.e., between half and full
T1 rate)in all our experiments. While these tests were conducted at relatively modest data rates, the results scale
with the available bandwidth (as shown in [IBF+99]). Generally, our experiments were conducted with a sender
at NASA’s Glenn Research Center and a receiver at Ohio University (or vice versa). However, several of our
experiments were performed with a loopback circuit, such that the sender and receiver were located in the same
location.

Thebulk of our experiments focuson theTransmission Control Protocol (TCP) [Pos81]. TCP is the Internet’s
most used transport protocol. TCP provides reliable, in-order transmission of data to applications. In addition,
TCP provides end-to-end congestion control mechanisms that attempt to protect the network against congestion

ACTS Conference 2000 ProceedingsPage 266

mailto:mallman@grc.nasa.gov
mailto:hkruse1@ohiou.edu
mailto:ostermann@cs.ohiou.edu

collapse(astatewhen thenetwork isvery busy, but littl euseful work isbeing done) [FF99]. Additionally, wehave
explored several application layer protocolsthat utilizeTCP.

This paper is organized as follows. Section 2 outlines our early work in determining the problemswith using
standard Internet protocolsover ACTS. Section 3 discussesan application layer mitigation to TCP’sshortcomings
over long-delay networks. Next, Section 4 outlinesour experiencesusing standardized solutionsto mitigateTCP’s
performanceproblemsover ACTS. Section 5 discussestwo experimental mechanismsintroduced into TCPand the
impact of these extensionson performance. Section 6 outlinesour investigation of the performanceof HTTP, the
application layer protocol used on the World-Wide Web. Section 7 discusses our investigation of using a realistic
traffic mix across a network path containing an ACTS satellite circuit. Section 8 outlines our experiments into
TCPperformanceover circuitswith non-zero bit-error rates. Finally, Section 9 givesour conclusionsand outlines
futurework in thisarea.

2 Problems with TCP/IP Over ACTS

Our early work [Kru95] illustrates two main causes of performance degradation in TCP file transfers. First, in
long transfers the advertised window supported by off-the-shelf TCP stacks is inadequate. The throughput (or
bandwidth attained) for long-lived TCP transfers is given by the formula in equation 1 [Pos81], whereW is the
advertised window size, B is the bandwidth of the network link andRTT is the round-trip time between the data
sender and thedata receiver.

W = B �RTT (1)

Theadvertised window is the largest amount of data that can bebuffered by thereceiver. Therefore, theadver-
tised window representsthelargest amount of dataaTCPsender can transmit beforereceiving an acknowledgment
(ACK) from thereceiver. AsB and/orRTT grow,W must beincreased accordingly. However, TCPplacesalimit
onW by only allocating 16 bits of header space for the value. Thus, the advertised window can be no more than
64 KB1. The effect of this limi t is that TCP cannot fully utilize the bandwidth of a network path with a large
delay-bandwidth product. In addition, many TCP stacks use advertised window sizes much less than 64 KB by
default. For instance, the hostsused in our early experiments [Kru95] utilized advertised window sizes of 24 KB.
Therefore, the maximum throughput of a transfer over ACTS was approximately 44,000 bytes/second regardless
of theamount of capacity availableover the satellite circuit.

The second problem noted in [Kru95] pertains to short transfers. Our experiments illustrate that TCP’s slow
start algorithm [Jac88, APS99] was the cause of the performancedegradation. The slow start algorithm is part of
TCP’scongestioncontrol mechanism. Thealgorithm introducesacongestionwindow (cwnd), which isthesending
TCP’s measure of the current capacity of the network. Slow start begins conservatively, by initializing cwnd to
1 segment. For each ACK received, cwnd is increased by 1 segment, providing an exponential increase in the
sending rate. The slow start algorithm terminateswhen loss is detected (assumed to indicate network congestion)
or cwnd reaches the advertised window size. For long transfers, this slow probing of the network to determine
the capacity is a small percentage of the transfer time and therefore does not have a large negative impact on
performance. However, for short transfers, TCP is never able to fully utilize the capacity of the network path.
For instance, a 2 segment transfer wil l take 2 RTTs (or more than 1 second) after TCP’s three-way handshake is
completed even if thenetwork capacity to transmit both segmentswasavailablewhen the transfer started.

Figure 1 from [All97] illustrates the low utilization of a satellite network during slow start, as compared to a
network with a terrestrial delay (80 ms in this model). Just before 4 seconds into the transfer over the satellite
link the slow start phase completes. During that same amount of time, the terrestrial network is able to transfer
22 times theamount of dataas issent over thesatellite link! After slow start, both networkssend thesamenumber
of bytes/second, but obviously theslow start phasehurts theperformanceof the long-delay connection much more
than the shorter-delay terrestrial network connection.

3 An Experimental Application Layer Mitigation

Theaboveproblemsled to thedevelopment of an application-level tool to enhancetheefficiency of data transfers.
We extended the the File Transfer Protocol (FTP) [PR85] to usemultipleTCPconnectionsto transfer a given file,

1For the first sets of experiments we did not consider TCP’s optional window scaling mechanism [JBB92], which allows for advertised
windows larger than 64 KB, due to the lack of implementations of the mechanism. Later experiments did utilize these TCP extensions, as
outlined in section 4.

ACTS Conference 2000 ProceedingsPage 267

100

1000

10000

100000

1e+06

1e+07

0 0.5 1 1.5 2 2.5 3 3.5 4

D
at

a
T

ra
ns

m
itt

ed
 (

by
te

s)

Time (seconds)

Satellite Network
Terrestrial Network

Figure 1: Data transferred as a function of time over satellite and terrestrial network paths.

rather than one connection as specified in [PR85]. This multiplied TCP’s aggressiveness by the number of TCP
connections being utilized. The syntax and semantics of the extensions to FTP are outlined in [AO97]. The ACTS
experiments involvingxftpare outlined in [AOK95, AKO96, All97].

Figure 2 shows the throughput of a 5 MB transfer as a function of the number of parallel data connections used
to transfer the file over an ACTS T1 link. Each connection used an advertised (maximum) window of 24 KB which
yields throughput of approximately 44,000 bytes/second, as outlined above. Therefore, we would predict that
4 connections would be required to fully utilize the capacity of the channel (approximately 192,000 bytes/second).
However, the best performance is obtained when using 6–8 data connections. We believe it takes more than four
connections to reach optimal performance due to segment overhead, as well as lingering slow start effects. When
using 6–8 connections we achieve nearly optimal throughput when all protocol overhead is taken into account.
Using more than 8 connections leads to sub-optimal performance (but, still much better than using a single con-
nection). This drop in throughput is caused by segment losses due to increased congestion from competing TCP
flows. Part of TCP’s congestion control mechanism calls for a reduction incwndwhen a loss is detected, as the loss
is assumed to indicate network congestion. As soon asxftp starts over-running router buffer queues, thus losing
segments, some of the connections reduce their sending rate, so the time required for the entire transfer increases.

The following are some of our key findings from ourxftpACTS experiments:

� Large advertised windows are required. As predicted by the experiments outlined in the previous section,
using a largereffective window size(i.e., the sum of the advertised window sizes across all connections used
by xftp) allows full utilization of the available capacity for long-lived data transfers.

� Larger initial congestion window sizes help. UsingN connections in parallel speeds up slow start by using
an effective initialcwndofN segments. This cuts several RTTs off the transfer time and could be especially
useful for short transfers.

� The throughput of the transfer is sensative to the number of connections employed. Using too few connec-
tions results in an effective advertised window less than the delay-bandwidth product and thus an underuti-
lization of the capacity. Using too many connections leads to loss on the channel and a reduction in sending
rate due to network congestion. Finding a general mechanism to choose the proper number of connections
during the data transfer proved difficult [AKO96].

� The multiple TCP connections acted much like a “selective acknowledgment” (SACK) mechanism. In other
words,xftp’s loss recovery is more efficient than the standard TCP loss recovery [APS99] because it was

ACTS Conference 2000 ProceedingsPage 268

70

80

90

100

110

120

130

140

150

160

170

2 4 6 8 10 12 14 16 18 20

K
B

yt
es

/S
ec

on
d

TCP Connections

Throughput

Figure 2: Performance of xftp as a function of the number of parallel TCP connections employed over an ACTS
T1 circuit.

spread acrossmany connectionsthat each keep track of their own sequencespace. Standard TCPcan effec-
tively recover from one lost segment per RTT [FF96]. Therefore, xftp can effectively recover from roughly
N lossesper RTT (assumingN parallel connections).

Finally wenotethat using multipleparallel TCPconnectionsisnot “friendly” to thenetwork in general because
each indication of network congestion reduces cwnd by less than the reduction would be if one connection were
used [FF99]. Therefore, while xftp is a valuable tool in learning about network dynamics it is not recommended
for general purposeuse.

4. Standard Solutions

During our investigations, the Internet Engineering Task Force (IETF) standardized options to TCP to mitigate
some of the problems outlined above. RFC 1323 [JBB92] introduced an option for TCP to advertise windows
much larger than 64 KB. Meanwhile, RFC 2018 [MMFR96] introduced a selective acknowledgment (SACK)
option to TCP. Using the SACK option, receiverscan inform sendersexactly which segmentshave arrived, rather
than relying on TCP’scumulativeacknowledgment. ThisallowsaTCPsender to efficiently recover from multiple
lost segments without reverting to using a costly retransmission timeout to determine which segments need to be
resent [FF96].

We conducted a series of ACTS experimentsusing these two new TCP options [AHKO97, Hay97]. Figure 3
shows the throughput for a number of different variants of TCP as a function of transfer size. We used a half-T1
ACTS link for these experiments. Thexftp experimentsuse 4 parallel connections. First, we turn our attention to
the two experimentsrun using effectiveadvertised window sizesof thedelay-bandwidth product (which produces
no network congestion and therefore no segment loss). In this case, xftp slightly outperforms the one connection
Reno transfer. Theamount by which thethroughput differsbetween thetransfersgetssmaller asthetransfersgrow
longer. This indicates that thedifference isdueto thexftp transfer using a larger initial cwnd.

The lower three lines on the plot represent experiments with a larger than necessary advertised window. The
increased advertised window leads to dropped segments due to buffer overflow in a router in the middle of the
network path. Standard Reno TCPperformstheworst in theseexperiments. Asshown, using TCPwith theSACK
option drastically increases throughput. Using xftp provides still better throughput. However, xftp has a more
aggressive response to network congestion than a single TCP connection. When one loss occurs on the set of
parallel connectionsonly oneof thefour TCPconnectionsreducesitscwnd by half, leading to an overall reduction
of an eighth in response to a single congestion indication (rather than the standard reduction of one half) in this

ACTS Conference 2000 ProceedingsPage 269

10

20

30

40

50

60

70

80

1.00*10^5 1.00*10^6 1.00*10^7

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

on
d)

Transfer Size (bytes)

Reno- DBP Window
XFTP- DBP Window

Reno- DBP+28K Window
XFTP- DBP+28K Window
SACK- DBP+28K Window

Figure3: Throughput of variousversionsof TCPasa function of transfer size.

experiment. Themoreaggressiveresponseto congestion used by xftp explainsthethroughput benefit shown in the
plot.

The following isasummary of our conclusionsfrom thisset of ACTSexperiments:

� When the network is uncongested, TCP’s largewindow extensions(RFC 1323 [JBB92]) providenearly the
same behavior asxftp, modulo the larger initial cwnd utilized by xftp.

� TCP’s SACK option providesdrastic throughput improvementsin the faceof network congestion.

� The results of these experiments alluded to the fact that the throughput of a transfer was quite sensative to
the advertised window chosen. Hayes [Hay97] emulated our ACTS setup and shows the disastrous effects
that choosing thewrong advertised window size can haveon performance.

The ACTS experiments outlined in this section were influential to the IETF’s TCP Over Satellite Working
Group asRFC 2488 [AGS99] wasprepared. ThisRFC outlinesthestandard IETF mechanismsthat should beused
by hosts transfering dataover network pathscontaining satellite links.

5. Experimental TCP Mitigations

Our next short set of ACTSexperimentsinvolved investigatingwaysto mitigatetheunderutilizationof thenetwork
during the slow start phase of a TCP transfer. The first mechanism we studied was using a larger initial cwnd, as
suggested by theexperimentsoutlined in the last section.

Figure4 from [All97] showsthroughput improvement asafunction of the initial cwnd size for varioustransfer
sizes. As shown, the throughput increases as the initial value of cwnd is increased. The impact is especially
significant for short transfers. The impact for the longer transfers is much less due to the relatively short amount
of timespent using slow start when compared to the total time required to transfer thefile.

These experiments, along with several additional investigations[AHO98, PN98, SP98], influenced the IETF’s
decision to make theuse of a larger initial cwnd a sanctioned experimental mechanism [AFP98].

Our second set of experiments involved a slightly modified algorithm for increasing cwnd during slow start.
As outlined in section 2, cwnd is increased by 1 segment for each ACK received during slow start. Many TCP
receiversemploy thedelayed acknowledgment algorithm [Bra89, APS99]. That is, receiversareallowed to refrain
from sending an ACK for each incoming segment. However, an ACK must be sent for every second full-sized
segment received. Furthermore, an ACK can not be delayed for more than 500 ms. By reducing the number of

ACTS Conference 2000 ProceedingsPage 270

-20

0

20

40

60

80

100

120

140

160

180

200

1 10 100

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

%
)

Initial Window (segments)

30,720 byte transfer
102,400 byte transfer
204,800 byte transfer

1,048,576 byte transfer
5,242,880 byte transfer

Figure4: Throughput improvement asa function of initial cwnd size.

ACKs sent to the data originator, the receiver is slowing the growth of cwnd. We introduced an algorithm called
byte counting which allows the sender to increase cwnd based on the number of new segments acknowledged by
each incoming ACK, rather than on thenumber of ACKs received.

FileSize Throughput
Improvement (%)

30 KB 9.4
100 KB 16.9
200 KB 15.3
1 MB 8.5
5 MB 9.5

Table1: Throughput improvement when using bytecounting rather than ACK counting to increasecwnd.

Table 1 shows the performance improvement of using byte counting as opposed to traditional ACK counting
[All9 7]. As shown, the improvement for short transfers is better than for long transfers (even though the im-
provement is good for long transfers, as well). This shows that byte counting is important in slow start, but is
also important during congestion avoidance (the phase whereby TCP probes for additional network capacity by
increasing cwnd linearly).

Byte counting has been adopted by the IETF as a proposed standard during the congestion avoidance phase
of TCP connections [APS99]. Further refinements to byte counting have been suggested since the above ACTS
experiments[All9 8, All99] . Our hopeis to develop an experimental document within theIETF to allow someform
of bytecounting during slow start in addition to itsalready sanctioned use during congestion avoidance.

6 HTT P Experiments

The next set of ACTS experiments we conducted employed the HyperText Transfer Protocol (HTTP) [BLFN96,
FGM+97], the application layer protocol used for World-Wide Web (WWW) transfers. HTTP uses TCP for
reliable transport of its data. Two versionsof HTTP have been defined and are in widespread use on the Internet.
HTTP/1.0 [BLFN96] transfersa single WWW “object” (HTML document, image file, etc.) per TCP connection.
Oftentimes, WWW browsersopen multipleHTTP/1.0 connectionssimultaneously to decreasethetimerequired to

ACTS Conference 2000 ProceedingsPage 271

transfer all objects necessary to render a web page. HTTP/1.1 [FGM+97] allows a TCP connection to be re-used
for transfering multiple WWW objects2. In addition, HTTP/1.1 provides a “pipelining” mechanism, whereby a
WWW browser can request any number of objects as soon as possible, rather than waiting until the previous object
has been transfered to request the next object.

2

4

6

8

10

12

14

16

18

acts LeRC oufr Test

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

WWW Page

1.0/C=4/4K=no
1.0/C=1/4K=yes
1.1/C=1/4K=no

1.1/C=1/4K=yes

Figure 5: Comparison of HTTP variants.

Figure 5 shows the results of our ACTS experiments with both versions of HTTP. The labels along thex-axis
represent different WWW pages. The WWW pages used in our study have differing characteristics (number of
objects, size of objects, etc.). See [KAGT98, KAGT00] for a description of the page characteristics. Each line on
the plot is labeled with three settings used for the particular experiment, as follows.

1. The version of HTTP used (“1.0” or “1.1”).

2. The number of parallel TCP connections employed to transfer the WWW objects (“C= x” wherex is the
number of connections used).

3. Whether the underlying TCP stack used a larger initialcwnd, per the proposal outlined in [AFP98] (“4K= z”
wherez is “yes” when using a larger initialcwndor “no” when using the standard initialcwnd).

The following are the key results from our study of HTTP transfers over ACTS.

� HTTP/1.1 generally outperforms HTTP/1.0, even when HTTP/1.0 is used in conjunction with multiple si-
multaneous TCP connections.

� When using only one TCP connection, HTTP/1.0 performs quite badly, even when using a larger initial
congestion window. This happens because each object must endure TCP’s slow start phase. When using
a single connection with HTTP/1.1, the effects of slow start are diminished because the TCP connection is
reused a number of times. Therefore, the small objects that make up the WWW page are combined to behave
more like a bulk transfer and therefore improve network utilization (as discussed in the previous sections).

� As outlined in the previous section, using a larger initial value for the congestion window improves perfor-
mance for short transfers (which are characteristic of WWW traffic).

2HTTP/1.0 also has a “keepalive” option for using persistent connections. Use of this option in HTTP/1.0 implementations is limited and
the mechanism is equivalent to the base HTTP/1.1 persistent connection mechanism. Therefore, we do not present any results using HTTP/1.0
with keepalives, as our experiments indicated the HTTP/1.1 (without pipelining) case is roughly equivalent.

ACTS Conference 2000 ProceedingsPage 272

� Kruse[KAGT00] definesamodel for HTTPtransfersthat accurately predictsthetransfer timeof web pages
of varioussize.

Theseexperimentsaided theIETF in deciding to maketheuseof alarger initial valuefor cwnd an experimental
mechanism [AFP98]. In addition, these experiments highlight the importance of carefully designing application
protocolssuch that theinteractionsbetween theapplicationand theunderlyingtransport donot hinder performance.

7. RepresentativeNetwork Traffic

Up to this point our experimentshave involved a single file transfer over an otherwise unloaded network path. In
our next set of ACTS experiments, we strive to assess the ability of a realistic group of TCP transfers to utilize
the available bandwidth across a network path containing a satellite channel [KAG+99]. As shown in the previ-
ous sections, short TCP transfers can underutilize the available bandwidth when no competing traffic is present.
However, our previousexperimentshave not assessed the ability of a group of TCP connections to utilize the full
capacity of a long-delay network path. We developed a traffic generator called trafgen [Hel98], based on tcplib
[DJ91] for theseexperiments. First, wetakeapacket-level traceof network traffic from aproductionnetwork (e.g.,
the network connecting NASA GRC to the Internet). The trace is then analyzed using tcptrace [Ost97] for traffic
characteristics. Finally, thesecharacteristicsare imported into trafgen, which then generatesarealistic mix of TCP
connectionsbased on theparticular production network that produced theoriginal trace.

0

50000

100000

150000

200000

250000

0 2000 4000 6000 8000 10000

U
til

iz
at

io
n

(b
yt

es
/s

ec
on

d)

Time (seconds)

(a) Aggregate throughput.

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000

A
ct

iv
e

C
on

ne
ct

io
ns

Time (seconds)

(b) Number of active connections.

Figure6: Behavior of a realistic mix of traffic asa function of timeover an ACTST1 circuit.

Figure 6 shows the results of a trafgen experiment over a T1 ACTS circuit between NASA GRC and Ohio
University. Asillustrated, thenetwork isfully utilized in many instances, whilealargenumber of TCPconnections
(or users) iseasily supported. Thisindicatesthat arepresentativegroupof TCPconnectionscan utilizetheavailable
bandwidth. While the long RTT may increase the transfer time of some individual TCPtransfers (when compared
to the same transfer over a network with a shorter RTT), it does not prevent the sum of the transfers from fully
utilizing thesatellite channel.

8. The Impact of Bit-Er rors

The final experiment we conducted over ACTS attempts to quantify the impact of non-zero bit-error rates (BER)
on TCP performance. An outline of this experiment and some preliminary results are given in [KOA00]. These
experimentswereconductedby adjusting theEarth-stationat Ohio University such that it didnot track theinclined-
orbit ACTSsatellite. As thesatellitemoved with respect to thedish, theBERsobserved varied. We ran long-lived
(1 hour) TCP flows through the network during this time and measured the bit-error rate using an out-of-band
channel. Further details can be found in [KOA00]. The TCP stack employed in this set of experiments used a

ACTS Conference 2000 ProceedingsPage 273

512 KB advertised window (via thehigh performanceTCPoptionsoutlined in section 4). Thisallows thenetwork
path to determinetheperformanceof a TCPconnection, rather than having theperformancedictated by a limi t on
the sending or receiving host (this situation simulates socket buffer autotuning [SMM98]). In addition, the stack
employed theTCPSACK option with the rate-halving algorithm [MSML99].

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1e-09 1e-08 1e-07 1e-06 1e-05 0.0001

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Bit-Error Rate

Figure7: Throughput asa function of bit-error rate.

Figure 7 shows the throughput obtained by a TCP connection as a function of the bit-error rate of the satellite
channel with 90% confidence intervals. The figure shows that with no bit-errors (denoted on the plot as 1e-09)
the TCP connection is able to fully utilize the T1 capacity of the satellite channel. However, as expected, as the
BER increases the throughput obtained by TCP decreases. The root of this problem is the fact that TCP cannot
determinewhy a particular segment was dropped. Therefore, in an effort to behaveconservatively, TCP interprets
all segment lossasan indication of network congestion and reducescwnd accordingly. Therefore, when asegment
is lost due to corruption, TCP mistakenly decreases the sending rate. Research into protocol mechanisms that
allow TCP to determine the true cause of a segment loss is ongoing. RFC 2760 [ADG+00] contains a discussion
of several of these mechanisms. Our results are consistent with analytical models of TCP performancethat show
throughput is indirectly proportional to the loss rate [MSMO97, PFTK98].

9. Conclusions and Future Work

Over the last six years, our ACTS experiments have shed light on the performance of the Internet protocol suite
over networkscontaining long-delay links. Table2 givesasummary of each of our experiments, thepaperswritten
about the experiments and the IETF standards influenced by our results. The following are the key results from
our experiments.

� TCPcan fully utilize thecapacity of asatellite link when transfering largeamountsof data.

� Short transfersoften underutilizethecapacity of the network, especially in long-delay environments. While
wehave introduced mechanismsthat may mitigate thisproblem, moreresearch in thisareawould beuseful.

� Application layer protocols can have a large influence on the performance of a data transfer. For instance,
using better application level mechanisms drastically decreased the transfer time required to load WWW
pages. Careful attention to the design of future application protocols is required to avoid poor interactions
between the transport and application layers.

� A realistic mix of network traffic can fully utilize theavailablebandwidth in asatellite network.

ACTS Conference 2000 ProceedingsPage 274

Experiment Outcome Papers Standards
Contributions

Preliminary FTP Larger effective advertised windows are needed. [Kru95] RFC 2488 [AGS99]
Experiments Slow start decreases performance for short transfers.
xftpExperiments While throughput improves when using multiple [AOK95] RFC 2760 [ADG+00]

parallel connections, choosing the right number [AKO96]
of connections is difficult. [All97]

High Performance Large windows help performance but lead to a [AHKO97] RFC 2488 [AGS99]
TCP Extensions higher probability of dropping multiple packets

from a window of data and thus causing a drastic
reduction in the transmission rate.

SACK The SACK option significantly improves throughput [AHKO97] RFC 2488 [AGS99]
Experiments throughput over satellite channels. [Hay97]
Larger Initialcwnd Using a larger initialcwndimproves throughput, [All97] RFC 2414 [AFP98]
Experiments especially for short transfers. RFC 2581 [APS99]
Byte Counting Using a modifiedcwnd increase algorithm [All97] RFC 2581 [APS99]
Experiments increases throughput, especially for short transfers
HTTP Experiments Using old versions of HTTP increases WWW response[KAGT98]

time significantly. Using HTTP/1.1 with pipelining [KAGT00]
provides significant benefits over satellite links.

Experiments with a The Internet protocol suite is able to fully utilize [Hel98]
Realistic Traffic Mix the capacity provided by satellite channels when a [KAG+99]

representative traffic load is used.
Bit-Error Rate Tests As the BER increases the throughput obtained by [KOA00]

TCP decreases due to the mistaken assumption
that lost segments indicate network congestion.

Table 2: Summary of key results.

� As the BER of a channel is increased the TCP throughput decreases. Future research is needed into ways to
distinguish between congestion-based segment loss and corruption-based segment loss.

These key results have been influential in several Internet Engineering Task Force Working Groups. In partic-
ular, the results aided the TCP Over Satellite WG in producing RFC 2488 [AGS99] that describes which standard
TCP mechanisms should be used when transfering data over satellite channels and RFC 2760 [ADG+00] which
describes some of the open research topics in this area. Additionally, our ACTS experiments helped the IETF
decide to increase the initial value ofcwnd to 2 segments in RFC 2581 [APS99] and more experimentally to
3–4 segments in RFC 2414 [AFP98].

ACTS Conference 2000 ProceedingsPage 275

Acknowledgments

We would like to thank all our colleaguesat NASA GRC and Ohio University, whose help was invaluableduring
our experiments. We would like to especially thank Bob Bauer, Kul Bhasin, Dan Glover, Jim Griner, ChrisHayes,
Eric Helvey, Wil l Ivancic, Paul Mallasch, Cindy Tran and Mike Zernic. In addition, these experiments simply
would not have been possible without a great deal of help from the ACTS operations team. We especially thank
Terry Bell, John Diamond, Peter Harbath and Paul McMasters. Finally, we’d like to thank the many colleagues
with whom wehavediscussed our experimentsfor their commentsand suggestionsover theyears. While thereare
too many people to list, the input we havereceived from the research community hasbeen invaluable. Our thanks
to all!

References

[ADG+00] Mark Allman, Spencer Dawkins, Dan Glover, Jim Griner, John Heidemann, Tom Henderson, Hans Kruse, Shawn
Ostermann, Keith Scott, Jeff Semke, Joe Touch, and Diepchi Tran. Ongoing TCP Research Related to Satellites,
February 2000. RFC 2760.

[AFP98] Mark Allman, Sally Floyd, and Craig Partridge. Increasing TCP’s Initial Window, September 1998. RFC 2414.

[AGS99] Mark Allman, Dan Glover, and Luis Sanchez. Enhancing TCP Over Satellite Channels Using Standard Mecha-
nisms, January 1999. RFC 2488, BCP28.

[AHKO97] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann. TCP Performance Over Satellite Links. In
Proceedings of the5th International Conference on Telecommunication Systems, pages 456–469, March 1997.

[AHO98] Mark Allman, ChrisHayes, and ShawnOstermann. AnEvaluation of TCPwith Larger Initial Windows. Computer
Communication Review, 28(3), July 1998.

[AKO96] Mark Allman, Hans Kruse, and Shawn Ostermann. An Application-Level Solution to TCP’s Satellite Ineffi-
ciencies. In Proceedings of the First International Workshop on Satellite-based Information Services (WOSBIS),
November 1996.

[All97] Mark Allman. Improving TCPPerformanceOver SatelliteChannels. Master’s thesis, Ohio University, June1997.

[All98] Mark Allman. On the Generation and Use of TCP Acknowledgments. Computer Communication Review, 28(5),
October 1998.

[All99] Mark Allman. TCPByteCounting Refinements. Computer Communication Review, 29(3), July 1999.

[AO97] Mark Allman and Shawn Ostermann. Multiple Data Connection FTP Extensions. Technical Report TR-19971,
Ohio University Computer Science, February 1997.

[AOK95] Mark Allman, Shawn Ostermann, and Hans Kruse. Data Transfer Efficiency Over Satellite Circuits Using a
Multi-Socket Extension to the File Transfer Protocol (FTP). In Proceedings of the ACTS Results Conference.
NASA Lewis Research Center, September 1995.

[APS99] Mark Allman, Vern Paxson, and W. Richard Stevens. TCPCongestion Control, April 1999. RFC 2581.

[BLFN96] Tim Berners-Lee, R. Fielding, and H. Nielsen. Hypertext Transfer Protocol – HTTP/1.0, May 1996. RFC 1945.

[Bra89] Robert Braden. Requirements for Internet Hosts – Communication Layers, October 1989. RFC 1122.

[DJ91] Peter Danzig and Sugih Jamin. tcplib: A Library of TCP/IP Traffic Characteristics. Technical Report CS-SYS-
91-01, University of Southern California, October 1991.

[FF96] Kevin Fall and Sally Floyd. Simulation-based Comparisons of Tahoe, Reno, and SACK TCP. Computer Commu-
nications Review, 26(3), July 1996.

[FF99] Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Congestion Control in the Internet. IEEE/ACM
Transactions on Networking, 7(6), August 1999.

[FGM+97] R. Fielding, Jim Gettys, Jeffrey C. Mogul, H. Frystyk, and Tim Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1, January 1997. RFC 2068.

[Hay97] Chris Hayes. Analyzing the Performance of New TCP Extensions Over Satellite Links. Master’s thesis, Ohio
University, August 1997.

[Hel98] Eric Helvey. Trafgen: An Efficient Approach to Statistically Accurate Artificial Network Traffic Generation.
Master’s thesis, Ohio University, June1998.

[IBF+99] William Ivancic, David Brooks, Brian Frantz, Doug Hoder, Dan Shell, and David Beering. NASA’s Broadband
SatelliteNetwork Research. IEEE Communications Magazine, July 1999.

ACTS Conference 2000 ProceedingsPage 276

[Jac88] Van Jacobson. Congestion Avoidance and Control. InACM SIGCOMM, 1988.

[JBB92] Van Jacobson, Robert Braden, and David Borman. TCP Extensions for High Performance, May 1992. RFC 1323.

[KAG+99] Hans Kruse, Mark Allman, Jim Griner, Shawn Ostermann, and Eric Helvey. Satellite Network Performance Mea-
surements Using Simulated Multi-User Internet Traffic. InProceedings of the Seventh International Conference
on Telecommunication Systems, March 1999.

[KAGT98] Hans Kruse, Mark Allman, Jim Griner, and Diepchi Tran. HTTP Page Transfer Rates Over Geo-Stationary Satel-
lite Links. In Proceedings of the Sixth International Conference on Telecommunication Systems, March 1998.

[KAGT00] Hans Kruse, Mark Allman, Jim Griner, and Diepchi Tran. Experimentation and Modeling of HTTP Over Satellite
Channels.International Journal of Satellite Communication, 2000. To appear.

[KOA00] Hans Kruse, Shawn Ostermann, and Mark Allman. On the Performance of TCP-based Data Transfers on a Faded
Ka-Band Satellite Link. InProceedings of the6th Ka-Band Utilization Conference, June 2000.

[Kru95] Hans Kruse. Performance of Common Data Communications Protocols Over Long Delay Links: An Experimental
Examination. In3rd International Conference on Telecommunication Systems Modeling and Design, 1995.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP Selective Acknowledgement Options,
October 1996. RFC 2018.

[MSML99] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and Kevin Lahey. The Rate-Halving Algorithm for TCP Congestion
Control, August 1999. Internet-Draft draft-mathis-tcp-ratehalving-00.txt (work in progress).

[MSMO97] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and Teunis Ott. The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm.Computer Communication Review, 27(3), July 1997.

[Ost97] Shawn Ostermann.tcptrace, 1997. Available from http://jarok.cs.ohiou.edu/.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP Throughput: A Simple Model and
its Empirical Validation. InACM SIGCOMM, September 1998.

[PN98] Kedarnath Poduri and Kathleen Nichols. Simulation Studies of Increased Initial TCP Window Size, September
1998. RFC 2415.

[Pos81] Jon Postel. Transmission Control Protocol, September 1981. RFC 793.

[PR85] Jon Postel and Joyce Reynolds. File Tranfer Protocol (FTP), October 1985. RFC 959.

[SMM98] Jeff Semke, Jamshid Mahdavi, and Matt Mathis. Automatic TCP Buffer Tuning. InACM SIGCOMM, September
1998.

[SP98] Tim Shepard and Craig Partridge. When TCP Starts Up With Four Packets Into Only Three Buffers, September
1998. RFC 2416.

[Ste94] W. Richard Stevens.TCP/IP Illustrated Volume I: The Protocols. Addison-Wesley, 1994.

ACTS Conference 2000 ProceedingsPage 277

